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Scale-free network model of node and connection diversity
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A network model with node and connection diversity is proposed in this paper. Distinctly from to other
models whose nodes and connections are represented by identical simple points and lines, we investigate
inhomogeneous networks with two kinds of sites and link by growth of preferential attachment. Scale-free
networks with varied centralizations and exponents~ranging from 2.0 to theoretically infinity! are obtained,
and the influences of the relative ratio of the two kinds of sitesp, the number of links connected from each site
m, and initial attractivenessd are studied. A mean-field theory that agrees well with our numerical results was
proposed and analyzed. The theory gives the analytical scaling exponent of the formg521p1d/m2d(1
2p)/(mp1m1d).

DOI: 10.1103/PhysRevE.65.066115 PACS number~s!: 05.10.2a, 05.40.2a, 87.18.Sn
io
-
ys
n

ea
rk
ee
on

c

al
ay
nc
a

-
n
n
e

ca
ar
es
r
s

es
h

or
a
d
w
n
ee
th
ls
rs

tein
ket
the
eb
a

t it is
es

and
al

rld.
nd
are

net-
ec-
c-
that
an
ism
of
ale-
nt

ies
ith

ain
-
ts

n-

s,
Important properties of small-world and scaling behav
observed in real-life networks@1–7# have led to the recogni
tion of networks as a prototype for studying complex s
tems. We realize that the view angle of the network is fu
damental to our understanding of the complexity in the r
world, which is essentially a huge set of complex netwo
@8#. Recently, attention along this line of research has b
focused on hierarchically organized networks, whose c
nectivity distributions follow a power law. As distinct from
homogeneous networks, such as those described by the
sical random graph model of Erdos and Renyi@9#, where no
node is particularly important, in this type of network a sm
fraction of vertices with high numbers of connections pl
key roles in the function of the whole system. The prese
of the scaling behavior is observed in a wide range of re
world networks. Examples include the Internet@2#, the World
Wide Web@3,5#, an electronic power grid@4#, the collabora-
tion graph of movie actors@3#, the citation pattern of scien
tific publications@1#, and metabolic and protein interactio
networks@6#. In order to describe the empirical results, co
siderable interest in designing scale-free network mod
with various specific features, as well as in their topologi
and dynamical properties is currently being aroused. A v
ety of models with different emphases on the growth proc
are proposed@10–13#. The question of stability to random o
intentional attacks@14,15#, topological properties such a
fractal dimensions, spectral dimensions@16,17#, and eigen-
value spectra@18# are investigated. Dynamical process
such as the spreading of a computer virus on the Internet
also been discussed recently@19#.

Most scale-free network models considered so far ign
the diversity of nodes and connections. Network vertices
viewed as identical simple sites, and links as simple non
rectional edges. The intricate real-world networks are, ho
ever, typically composed of distinct nodes and connectio
There can be many kinds of nodes, and the links betw
them can have directions and weights. For instance, in
biochemical network that controls cell division in mamma
@20#, enzymes and substrates as vertices are wildly dive
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and their interactions served as links are unilateral: a pro
contributes a peptide that binds to a receptor site or poc
on another protein, but usually the latter does not affect
former the same way. In the example of the World Wide W
~WWW!, HTML pages as nodes are obviously distinct:
page that has a link to another page does not assure tha
referenced back by the latter. This discrepancy sometim
leads to a qualitative difference between model systems
networks found in the real world. For example, from re
data@21# we calculate that the centralization index@for defi-
nition see Eq.~2!# of WWW is about 0.02; while a network
built using the rule of Barabasi and Albert@3# gives a value
of 0.0021, ten times smaller than that found in the real wo
In order to incorporate this ubiquitous diversity of node a
connection in real networks, models whose constituents
nonidentical nodes and links are desirable.

In this paper, we propose a simple inhomogeneous
work model that consists of two kinds of nodes and conn
tions. The nodes are linked with unidirectional or bidire
tional edges according to the specific types of two nodes
connect. We show that networks with scaling structure c
be built using these nonidentical elements by the mechan
of preferential attachment. By adjusting the relative ratio
the two distinct sites and other parameters, we obtain sc
free networks with different centrality. The scaling expone
ranges from 2.0 to infinity and the centralization index var
in a broad range. A mean-field theory that agrees well w
numerical results is introduced and analyzed.

I. THE MODEL

We consider two classes of nodes denoted byA and B,
representing two types of interacting elements with cert
distinct functions, and two kinds of links for their interac
tions. One kind of link is bidirectional edge that connec
between typeA nodes; the other one is unidirectional co
nection that points from a typeB site to a typeA site. Links
betweenB sites are prohibited in our model. In other word
a typeB site is only permitted to be linked by a typeA site,
while a typeA site can be connected either by anA or B site.
©2002 The American Physical Society15-1
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We define the connectivity~ or node degree! ki of site i in the
network as the total number of incoming links~connections
pointing to it! from other sites, and simulate a growth of
network using the following rules: start with a small numb
of sites (m0), among them there is at least oneA-type site. At
each time step, a newA or B site is created with probability
p or 12p, respectively. It is added to the existing network
makingm connections with old sites. When two typeA sites
are linked by a bidirectional edge, their connectivities a
both increased by 1; if instead anA site is connected to aB
site by a unidirectional edge, the former increases its conn
tivity by 1 while the degree of the latter remains unchang
The connection of a new member to the existing netw
follows the rule of preferential attachment,

W~ki !5
ki

(
j

kj

, ~1!

whereki is the connectivity of an old sitei in the network.
W(ki) is the probability that sitei is to be connected by th
new-coming site. It is determined by its node-degree con
bution to the summation of connectivity in the system.
order to endow eachB node with the chance to be connect
by A sites, eitherA or B sites are assigned with an initia
connectivity d; therefore both types have a nonzero init
linking probability. Notice that a connection between twoB
sites is prohibited, so that the connectivity for aB site never
increases. When the network grows, nodes with high va
of connectivity establish preferential relations with the new
added site.

Figure 1 illustrates four examples of growing networ
with different values ofp, which takes respectively 0.3, 0.5

FIG. 1. Examples of evolving networks built with different rel
tive ratios of A ~open circle! and B ~black dot! nodes, p
50.3, 0.5, 0.8, and 1.0 for~a!, ~b!, ~c!, and ~d!, respectively. The
total number of nodes is 80 withm51, d50, m051.
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0.8, and 1.0 for~a!, ~b!, ~c!, and ~d!. All networks are hier-
archically organized with a small fraction of highly con
nected sites. However, there is a qualitative difference am
them: the network in Fig. 1~a! is highly centralized, it is very
close to a star network where most sites are connected w
hub of the typeA site; while the network in Fig. 1~d! is less
centralized. We observe that network with a higher value op
bears a lower centrality and vice versa. As a characteri
quantity for hierarchical networks, the centralizationC is
used to measure the centrality quantitatively@22#. It is de-
fined in our model as

C5

(
i

~kmax2ki !

m~G21!~G2p21!
, ~2!

wherekmax is the highest connectivity of all sites in the ne
work, andG is the total number of sites. The centrality
measured by the summation of the connectivity discrepa
of each site fromkmax. The denominator in Eq.~2! is a
normalization factor, which is the maximal centralizatio
that a network can be built with the given constraint~i.e.,
with the sameG andp!. In the simulation, we calculated th
dependence of the centralization on the value ofp. The result
is shown in Fig. 2~circles!. One observes that the centraliz
tion decreases fast with the increase ofp.

The scale-free feature is reserved in our networks. T
probability P(k) that a site in the network hask incoming
links follows a power law. Figure 3 shows the connectiv
~or node degree! distribution for a network of 300 000 node
with p50.5. The double-logarithmic plot shows a bound
scale-free behavior with a connectivity cutoff. This cuto
comes out from the finite network size. For a graph o
much larger size, the linear regime will extend. Genera
for networks with a large enough amount of sites, the sca
free regime is well defined and the slope does not depen
the network size. Figure 3 has been obtained by calcula
the average from the data of 20 runs of simulations. T
result of a sample can differ a little from the average due
fluctuations~refer to the inset of Fig. 3 for a sample!. The
fluctuation is generally not significant when the network s
is large enough. The exponentg for P(k)}k2g in the scale-
free regime as a function ofp is shown in Fig. 4~circles!. g

FIG. 2. The centralization as a function ofp. Circles in the
figure are numerical simulations; the solid line is theoretical pred
tions of Eq.~13!. Parameters:m53, d51, m053, with a total of
30 000 nodes.
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decreases with the increase ofp. Notice that indexg is not
exactly linear as a function ofp but with a little deviation.
This property will be clear in the following theoretical anal
sis.

II. THE MEAN-FIELD THEORY

We next give a mean-field analysis for the networks
scribed above. It allows us to determine the scaling ex
nents and the centralizations analytically. Since the gro
probability of node degree for a sitei is proportional to its
connectivity contribution to the whole network, one read
writes the continuous growth dynamics of node degreeki for
site i as

dki~ t !

dt
5m

ki~ t !

(
j 51

m01t

kj~ t !

. ~3!

The denominator in the above equation, which is the to
connectivity of the system at timet, can be assumed to hav
the form

(
j 51

m01t

kj~ t !5d~m01t !1pmt1lmt. ~4!

FIG. 3. Log-log plot ofP(k);k for networks of 300 000 node
with p50.5. It was calculated from the average of 20 simulat
runs. The solid line has a slope of 2.64. Other parameters:m5m0

53, d51.0.

FIG. 4. Scaling exponentg as a function ofp from numerical
simulations~circles! and theoretical prediction~solid line! of Eq.
~11!. Parameter values are as those for Fig. 2.
06611
-
-

th

l

The first term on the right-hand side is the sum of all init
connectivities at timet. It is determined by the specific valu
of d, which is a small number and represents the initial
tractiveness of a new site added to the system, and the
number of sites (m01t) in the network. As vertices are
added at equal time intervals to the system, a fraction~p! of
them isA type sites. The second term comes from this cl
of sites. When anA site enters the system, its node degr
increases bym no matter what kind of node it bumps into
The third term in Eq.~4! is due to the situation when a newl
coming site happens to be connected with anA site in the
system: whatever type of site is the newly added node
increases the degree of the oldA site it connected to by one
l in Eq. ~4! is the probability that a connection from the ne
coming site is linked with a typeA site. It depends ont, and
can be approximately written as

l~ t !5
d~m01t !p1mpt1mt

d~m01t !1mpt1mt
, ~5!

where the numerator is the total connectivity of allA sites;
the denominator is roughly the sum of node degree for
sites in the system.l grows quickly to a saturated platform
as the time proceeds. The limit value ofl(t) when time goes
to infinity is

l`512
~12p!d

mp1m1d
. ~6!

Taking into account Eq.~4! and Eq.~6!, and with the initial
condition that sitei was added into the system at timet i with
connectivityki(t i)5m1d, Eq. ~3! can be solved as

ki~ t !5~m1d!F Qt1m0d

Qt i1m0dGm/Q

, ~7!

where Q[d1mp1ml` . From the above result, we ca
calculate the connectivity distribution. The probability tha
vertexi has a connectivityki(t) smaller thank can be written
as

P„ki~ t !,k…5PS t i .

@Qt1m0d#S m1d

k D Q/m

2m0d

Q
D .

~8!

As the nodes are added to the system at equal time inter
the probability density oft i is 1/(m01t). P„ki(t),k… then
has the form

P„ki~ t !,k…5S 12

@Qt1m0d#S m1d

k D Q/m

2m0d

Q~m01t !
D .

~9!

The connectivity distributionP(k) is finally

P~k!5
@Qt1m0d#~m1d!Q/m

m~m01t !
k2(11Q/m). ~10!
5-3
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From the above scaling law, the exponentg is

g521p1
d

m
2

~12p!d

mp1m1d
. ~11!

The solid curve in Fig. 4 is the theoretical result calcula
from Eq. ~11!. The numerical simulation~circles! in the fig-
ure fluctuates around the theoretical prediction. The ag
ment is not perfect because of limited total sites we sim
lated. A simulation of sufficient large network will eliminat
the discrepancy. From Eq.~11!, one sees that the expone
does not linearly depend onp. Instead, it is determined b
p,m, andd together in a complex manner. Its value is alwa
larger than 2.0, and has an infinite upper bound due to thd
terms.

The centralizationC can be calculated from Eq.~7!. The
vertex that has the largest connectivity in the system is
one created att i50. The connectivitykmax is therefore

kmax5~m1d!FQt1m0d

m0d Gm/Q

. ~12!

The analytical centralization according to definition Eq.~2!
has the form

C5
kmax~m01t !2@d~m01t !1pmt1l`mt#

m~ t1m021!~ t1m02p21!
. ~13!

The theoretical prediction of Eq.~13! agrees well with the
numerical results. The solid line in Fig. 2 depicts the dep
dence of the centralization onp. It is in consistency with the
numerical simulations.

III. DISCUSSION

In the limit whenp approaches 1,A-type nodes dominate
the whole system. The network is still scale free, but loses
diversity in node and connection. At this limit, the expone
3,g,`. At the other end limit ofp50, all sites are ofB
type, which deny any connection with each other. This le
to a complete disassembly of the system. The initial attr
om
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tivenessd plays a nontrivial role in the growth of the ne
work by introducing the effect ofm on g. It can also drive
the system out of scale-free structure and push it into a
dom network asd goes to infinity. At zero initial attractive-
ness (d50),g521p, which is independent ofm. In this
case, whenp51, the network comes back to the origin
scale-free model of Barabasi and Albert~BA! with g53 @3#.

The model considered here brings out networks with sc
ing exponents and centralizations varying in a wide range
which real random networks happen to fall. As reported p
viously @3#, the actor collaboration network, WWW, pape
citation pattern, and electrical power grid have ag of value
2.3, 2.1, 3.0, and 4.0, respectively. We estimated the cen
ization value of WWW from real data containing 325 72
nodes@21#. It is about 0.02 withm'2.73. Using this number
and supposingd to be about 1, we getp50.3 and the scaling
indexg52.5. Compared with the BA model which gives th
much smaller value of 0.0021 with the samem andg53, our
model is closer to the real situation.

From the results presented here, we see that the rela
ratio of distinct nodes and connections has important effe
on the behavior of the system. By adjusting the ratio,
scaling exponents vary accordingly. The network presen
here is the simplest model that incorporates node and c
nection diversity. The ubiquitous diversity in node and co
nection of real-world networks is surely much more comp
cated than the case considered here. The elements can w
vary in their properties, and the interactions among them
complex@23#. Profound topological properties and dynam
cal behaviors are expected in these situations so that m
realistic network models that take into account various e
pirical aspects of real networks are desirable in order to
derstand the intricate behaviors of complex systems.
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