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Scale-free network model of node and connection diversity
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A network model with node and connection diversity is proposed in this paper. Distinctly from to other
models whose nodes and connections are represented by identical simple points and lines, we investigate
inhomogeneous networks with two kinds of sites and link by growth of preferential attachment. Scale-free
networks with varied centralizations and exponemnénging from 2.0 to theoretically infinijyare obtained,
and the influences of the relative ratio of the two kinds of gitehe number of links connected from each site
m, and initial attractivenesg are studied. A mean-field theory that agrees well with our numerical results was
proposed and analyzed. The theory gives the analytical scaling exponent of the/fo2m p+ 6/m— 5(1
—p)/(mp+m+ ).
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Important properties of small-world and scaling behaviorand their interactions served as links are unilateral: a protein
observed in real-life networkd —7] have led to the recogni- contributes a peptide that binds to a receptor site or pocket
tion of networks as a prototype for studying complex sys-on another protein, but usually the latter does not affect the
tems. We realize that the view angle of the network is fun-former the same way. In the example of the World Wide Web
damental to our understanding of the complexity in the reaAlWWW), HTML pages as nodes are obviously distinct: a
world, which is essentially a huge set of complex networkspage that has a link to another page does not assure that it is
[8]. Recently, attention along this line of research has beereferenced back by the latter. This discrepancy sometimes
focused on hierarchically organized networks, whose conteads to a qualitative difference between model systems and
nectivity distributions follow a power law. As distinct from networks found in the real world. For examp|e, from real
homogeneous networks, such as those described by the claggta[21] we calculate that the centralization indgar defi-
sical random graph model of Erdos and Ref8fi where no  pjtion see Eq(2)] of WWW is about 0.02; while a network
node is particularly important, in this type of network a small it using the rule of Barabasi and Albd@] gives a value
fraction of vertices with high numbers of connections play 4t 0021, ten times smaller than that found in the real world.
key roles in the function of the whole system. The presence, o qer 1o incorporate this ubiquitous diversity of node and

\?JotrT; nsgtexllg]r?(sbelzhfgrfrhlessci)r?cslﬁidvee?h:enlr?ty{?é rtﬁggvflo?lc dreal'connection in real networks, models whose constituents are
) P nonidentical nodes and links are desirable.

Wide Web[3,5], an electronic power grif#], the collabora- In this paper, we propose a simple inhomogeneous net-

tion graph of movie actorg3], the citation pattern of scien- X .
tific publications[1], and metabolic and protein interaction vyork model that con5|sf[s of tWO. kmds_ (.)f nqdes and connec-
tions. The nodes are linked with unidirectional or bidirec-

networks[6]. In order to describe the empirical results, con- . X o
siderable interest in designing scale-free network modeldonal edges according to the specific types of two nodes that

with various specific features, as well as in their topologicalconnect. We show that networks with scaling structure can

and dynamical properties is currently being aroused. A varibe built using these nonidentical elements by the mechanism

ety of models with different emphases on the growth procesQf prefergnt!al attgchment. By adjusting the relative ratio of

are proposefll0—13. The question of stability to random or the two distinct sites and other parameters, we obtain scale-

intentional attackg 14,15, topological properties such as free networks with _dlf_fe_rent centrality. Th_e sgalln_g expone_nt

fractal dimensions, spectral dimensioii$,17, and eigen- fanges from 2.0 to infinity ar_1d the centralization index varies

value spectra[18] are investigated. Dynamical processesin & br_oad range..A .mean—fleld theory that agrees well with

such as the spreading of a computer virus on the Internet hagimerical results is introduced and analyzed.

also been discussed recenithg].

Most scale-free network models considered so far ignore

the diversity of nodes and connections. Network vertices are I. THE MODEL

viewed as identical simple sites, and links as simple nondi-

rectional edges. The intricate real-world networks are, how- We consider two classes of nodes denotedAbsnd B,

ever, typically composed of distinct nodes and connectionsiepresenting two types of interacting elements with certain

There can be many kinds of nodes, and the links betweedistinct functions, and two kinds of links for their interac-

them can have directions and weights. For instance, in thdons. One kind of link is bidirectional edge that connects

biochemical network that controls cell division in mammals between typeA nodes; the other one is unidirectional con-

[20], enzymes and substrates as vertices are wildly diverseection that points from a typB site to a typeA site. Links
betweenB sites are prohibited in our model. In other words,
a typeB site is only permitted to be linked by a typesite,

*Corresponding author. Email address: gi@phy.pku.edu.cn while a typeA site can be connected either by Ar B site.
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FIG. 2. The centralization as a function pf Circles in the
figure are numerical simulations; the solid line is theoretical predic-
tions of Eq.(13). Parametersm=3, §=1, my=3, with a total of
30000 nodes.

0.8, and 1.0 for(a), (b), (c), and(d). All networks are hier-
archically organized with a small fraction of highly con-
nected sites. However, there is a qualitative difference among
them: the network in Fig.(®) is highly centralized, it is very
close to a star network where most sites are connected with a
hub of the typeA site; while the network in Fig. @) is less
centralized. We observe that network with a higher valug of
bears a lower centrality and vice versa. As a characteristic
quantity for hierarchical networks, the centralizatiGnis
used to measure the centrality quantitativel?]. It is de-
fined in our model as

FIG. 1. Examples of evolving networks built with different rela-
tive ratios of A (open circl¢ and B (black do} nodes, p
=0.3,0.5, 0.8, and 1.0 fofa), (b), (c), and(d), respectively. The
total number of nodes is 80 witm=1, =0, my=1.

We define the connectivityor node degreek; of sitei in the

network as the total number of incoming linksonnections
pointing to i) from other sites, and simulate a growth of a

network using the following rules: start with a small number ZI (Kmax— ki)
of sites (Mmy), among them there is at least ofwdype site. At C= , 2)
each time step, a ned or B site is created with probability m(G-1)(G-p—-1)

por 1-p, respectively. Itis added to the existing network by whereka is the highest connectivity of all sites in the net-

makingm connections with old sites. When two typesites : . o
are linked by a bidirectional edge, their connectivities arework’ andG is the total number of sites. The centrality is

both increased by 1; if instead @nsite is connected to B measured_by the summation of the _conne(;tivity disr_:repancy
site by a unidirectional edge, the former increases its conne(?-f each site fromKpmay. The Qenommato'r in Eq(2) IS a
tivity by 1 while the degree of the latter remains unChangeOInormallzatlon factor, which is the maximal centralization

The connection of a new member to the existing networl}h.at a network can be built W.'th thg given constraiiné.,
follows the rule of preferential attachment, with the samés andp). In the simulation, we calculated the

dependence of the centralization on the valup.dfhe result

K is shown in Fig. 2circles. One observes that the centraliza-
W(k;)= - (1) tion decreases fast with the increasepof
E i The scale-free feature is reserved in our networks. The

] probability P(k) that a site in the network hasincoming
links follows a power law. Figure 3 shows the connectivity
wherek; is the connectivity of an old sitein the network.  (or node degreedistribution for a network of 300 000 nodes
W(k;) is the probability that sité is to be connected by the with p=0.5. The double-logarithmic plot shows a bounded
new-coming site. It is determined by its node-degree contriscale-free behavior with a connectivity cutoff. This cutoff
bution to the summation of connectivity in the system. Incomes out from the finite network size. For a graph of a
order to endow eacB node with the chance to be connected much larger size, the linear regime will extend. Generally,
by A sites, eitherA or B sites are assigned with an initial for networks with a large enough amount of sites, the scale-
connectivity §; therefore both types have a nonzero initial free regime is well defined and the slope does not depend on
linking probability. Notice that a connection between tBo the network size. Figure 3 has been obtained by calculating
sites is prohibited, so that the connectivity foBaite never the average from the data of 20 runs of simulations. The
increases. When the network grows, nodes with high valuesesult of a sample can differ a little from the average due to
of connectivity establish preferential relations with the newlyfluctuations(refer to the inset of Fig. 3 for a sampleThe
added site. fluctuation is generally not significant when the network size
Figure 1 illustrates four examples of growing networksis large enough. The exponeptfor P(k)<k™” in the scale-
with different values ofp, which takes respectively 0.3, 0.5, free regime as a function @fis shown in Fig. 4(circles. y
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The first term on the right-hand side is the sum of all initial
connectivities at time. It is determined by the specific value
of &, which is a small number and represents the initial at-
tractiveness of a new site added to the system, and the total
number of sites fp+t) in the network. As vertices are
added at equal time intervals to the system, a fradjprof
them isA type sites. The second term comes from this class
of sites. When arA site enters the system, its node degree
increases byn no matter what kind of node it bumps into.
The third term in Eq(4) is due to the situation when a newly
T coming site happens to be connected withAasite in the
° 10" 102 10° system: whatever type of site is the newly added node, it
k increases the degree of the @ddsite it connected to by one.
\ in Eq. (4) is the probability that a connection from the new
FIG. 3. Log-log plot ofP(k) ~k for networks of 300 000 nodes coming site is linked with a typd site. It depends oh and
with p=0.5. It was calculated from the average of 20 simulationcgn he approximately written as
runs. The solid line has a slope of 2.64. Other parametersm,
=3,6=1.0. S(my+t)p+mpt+mt

~ 8(mp+t)+mpt+mt

®

decreases with the increase pfNotice that indexy is not

exactly linear as a function gf but with a little deviation.  \yhere the numerator is the total connectivity of Alites;
T.hIS property will be clear in the following theoretical analy- ihe denominator is roughly the sum of node degree for all
SIS. sites in the system\ grows quickly to a saturated platform

as the time proceeds. The limit valueXdft) when time goes
Il. THE MEAN-FIELD THEORY to infinity is

We next give a mean-field analysis for the networks de- (1-p)s
scribed above. It allows us to determine the scaling expo- Np=1— ———.
nents and the centralizations analytically. Since the growth mp+m+4é
probability of node degree for a siteis proportional to its
connectivity contribution to the whole network, one readily
writes the continuous growth dynamics of node dedgfer

sitei as

(6)

Taking into account Eq4) and Eq.(6), and with the initial
condition that site was added into the system at tirpevith
connectivityk;(t;)=m+ 8, Eq. (3) can be solved as

m/®

Ot+mys
: )

Ot;+myd

dki(t) ki(t) 3) ki(t)=(m+6)

dt _mm0+t .

J_Z ki(t)

where ®=56+mp+m\,. From the above result, we can
calculate the connectivity distribution. The probability that a

The denominator in the above equation, which is the total,ertexi has a connectivity;(t) smaller thark can be written
connectivity of the system at tinte can be assumed to have zg

the form
m O/m
Mo+t [®t+m05](—k ) —mgd
®)
33 As the nodes are added to the system at equal time intervals,
20 the probability density of; is 1/(my+t). P(k;(t)<k) then
[ has the form
= 27r m O/m

24} [®t+ moﬁ](T> _m05
wul S Pki(t)<k)=\| 1- O (Mgt D

00 02 04 06 08 L0 9

P The connectivity distributioriP(k) is finally

FIG. 4. Scaling exponeny as a function ofp from numerical o/m
simulations(circleg and theoretical predictiogsolid line) of Eq. _ [Ot+mg5](m+ &)

kf(l+®/m). (10)
(11). Parameter values are as those for Fig. 2. m(mg+t)
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From the above scaling law, the exponenis tivenessés plays a nontrivial role in the growth of the net-
5 (1-p)s work by introducing the effect of on y. It can also drive
y=24pt - p (11) the system out of scale-free structure and push it into a ran-

m mp+m+§’ dom network ass goes to infinity. At zero initial attractive-
) o ) ) ness ¢=0),y=2+p, which is independent ofm. In this
from Eq.(11). The numerical simulatiokcircles in the fig-  gcale-free model of Barabasi and AlbéBiA) with y=3 [3].
ure fluctuates around the theoretical prediction. The agree- The model considered here brings out networks with scal-
ment is not perfect because of limited total sites we simuing exponents and centralizations varying in a wide range, in
lated. A simulation of sufficient large network will eliminate \yhich real random networks happen to fall. As reported pre-
the discrepancy. From E@11), one sees that the exponent yjysly [3], the actor collaboration network, WWW, paper
does not linearly depend om Instead, it is determined by jtation pattern, and electrical power grid have af value
p,m, andd together in a complex manner. Its value is alwaysp 3 2 1, 3.0, and 4.0, respectively. We estimated the central-
larger than 2.0, and has an infinite upper bound due t@the jzation value of WWW from real data containing 325 729
terms. o nodeg 21]. It is about 0.02 withm~2.73. Using this number
The centralizatiorC can be calculated from E7). The  anq supposing to be about 1, we gei=0.3 and the scaling
vertex that has the largest connectivity in the system is thg,qex y=2.5. Compared with the BA model which gives the

one created & =0. The connectivitkmy is therefore much smaller value of 0.0021 with the samandy=3, our
me model is closer to the real situation.
Ot+mys .
K= (M+ 8)| ———— (12 From the results presented here, we see that the relative
Mod ratio of distinct nodes and connections has important effects

on the behavior of the system. By adjusting the ratio, the
scaling exponents vary accordingly. The network presented
here is the simplest model that incorporates node and con-
Knad Mo+ 1) —[ 8(Mg+ 1) + pmt+ .. mt] nection diversity. The ubiquitous diversity in node and con-
= (13 nection of real-world networks is surely much more compli-
cated than the case considered here. The elements can wildly

The theoretical prediction of Eq13) agrees well with the Vary in their properties, and the interactions among them are
numerical results. The solid line in Fig. 2 depicts the depenfOmplex[23]. Profound topological properties and dynami-

dence of the centralization qm It is in consistency with the cal _be_haviors are expected in thege situations so _that more
numerical simulations. realistic network models that take into account various em-

pirical aspects of real networks are desirable in order to un-
derstand the intricate behaviors of complex systems.

The analytical centralization according to definition E2).
has the form

m(t+my—1)(t+myg—p—1)

Ill. DISCUSSION

In the limit whenp approaches 1A-type nodes dominate
the whole system. The network is still scale free, but loses its
diversity in node and connection. At this limit, the exponent The work was supported by the Chinese Natural Science
3< y<w. At the other end limit ofp=0, all sites are 0B  Foundation and Special Funds for Major State Basic Re-
type, which deny any connection with each other. This leadsearch Projects; X.C. thanks the Taizhao Foundation for sup-
to a complete disassembly of the system. The initial attracport and fruitful discussions with Y. Hu and F. Li.
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